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bstract

In this paper, an uncertain optimization method is suggested to obtain the optimal variable binder force in U-shaped forming. The friction
oefficient is regarded as the uncertain coefficient, and the stepped variable binder force model is used. The finite element method is employed
o simulate the forming process, and an uncertain objective function which represents the springback magnitude is created. The uncertain friction
oefficient is treated as an interval, no need to know its probabilistic distribution. Through a nonlinear interval number programming method, the
ncertain optimization problem is converted into a deterministic two-objective optimization problem. A hybrid optimization algorithm based on

he intergeneration projection genetic algorithm and neural network is used to obtain the optimum. The presented method is applied to optimize
he variable binder force parameters of the model from NUMISHEET’93. The forming quality based on the optimal variable binder force from the
resented method is compared with constant binder force. The results indicate that the presented method can find the fair variable binder force to
btain both of the small springback and strain under the uncertain friction coefficient.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The springback is one of the major faults in sheet metal
orming and it is difficult to be controlled. Springback is a
ery complex mechanical phenomenon that involves the mate-
ial property and the processing parameters such as friction
oefficient, sheet thickness, temperature, etc. The uneven distri-
ution of stress along the sheet thickness direction relaxes during
nloading, thus producing the springback [1]. The binder force
s often used to reduce the springback as the springback can be
ecreased with the increase of the binder force, while all other
rocessing and material parameters are held constant. However,
he increased binder force causes a subsequent increase of the

aximum strain in the material, and it often makes the mate-
ial cracked [1]. To solve this problem, Ayres [2], Hishida and
agoner [3], Sunseri et al. [4] proposed the stepped variable
inder force trajectory to obtain both of the small springback
nd strain. However, they had not given an effective approach
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ation; Interval number

o optimize the variable binder force parameters. Cao et al. [1]
sed the neural network (NN) to predict the stepped variable
inder force based on the punch force trajectory. Liu et al. [5]
etermined the variable binder force using the principle of “inter-
ediate restraining” and the forming limit diagram. Han et al.

6] adopted the progressive NN to inversely determine the vari-
ble binder force. All of these methods were based on the finite
lement method (FEM) and the friction coefficient was treated
s a constant. However, in the actual forming process, the fric-
ion coefficient is very difficult to measure experimentally. Thus
n the numerical simulation it actually cannot be specified as a
recise value. To avoid the discussion of the friction coefficient,
ome people just omitted its influence in numerical simulation.
evertheless it will lead to larger deviation as the friction coef-
cient is an important factor influencing the springback [7]. To
btain more reliable optimal variable binder force, the friction
oefficient should be regarded as an uncertain coefficient and the
orresponding uncertain optimization method should be used.
In the uncertain optimization, some coefficients cannot be
iven the precise values. The fuzzy [8–11] and stochastic
pproaches [12–14] are often used to describe and treat the
ncertain coefficients. In these methods, the uncertain coeffi-
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ients are regarded as the random variables or fuzzy sets based
n the known probability distributions or membership functions.
owever, it is always difficult to specify the membership func-

ion or probability distribution in the uncertain environment [15].
n recent years, the interval analysis methods of uncertainty were
eveloped for modeling uncertain coefficients of the engineer-
ng problems, in which the bounds of the uncertain coefficients
re only required. Tanaka et al. [16], Ishibuchi and Tanaka [17],
ommelfanger [18] discussed the linear programming problem
ith interval coefficients in the objective function. Tong [19]

onsidered the case in which the coefficients of the objective
nd constraint functions are all interval numbers. He obtained
he possible interval of the solution by taking the maximum value
ange and minimum value range inequalities as constraint condi-
ions. Liu and Da [20] proposed an interval number optimization

ethod based on the fuzzy constraint satisfactory degree. Ma
21] used the deterministic optimization method to obtain the
ounds of the nonlinear objective function, and converted it
nto a three-objective optimization problem. Most of these meth-
ds focused on the linear interval number programming instead
f the general nonlinear interval number programming (NINP).
hough reference [21] proposed a method to treat the nonlin-
arity of the objective function, the low optimization efficiency
ffected its application to the practical engineering problems.

In this paper, an uncertain optimization method is suggested
o optimize the stepped variable binder force in U-shaped form-
ng. The FEM is employed to simulate the forming process and
he friction coefficient is treated as an uncertain coefficient. The
ncertainty of the friction coefficient is described by an interval,
hich can be easily determined through the engineering experi-

nces and the practical forming problem. An uncertain objective
unction is created to minimize the springback. Based on an
INP method, a deterministic two-objective optimization prob-

em is obtained. A hybrid optimization algorithm is suggested
o seek for the optimum. The presented method is applied to the
omputational model of NUMISHEET’93 and the optimization
esults demonstrate the efficiency of this method.

. Statement of the problem

As shown in Fig. 1, the stepped variable binder force curve

s different from the constant binder force (CBF). A low binder
orce (LBF) is first acted on the part and it is intended to facilitate
he flow of the material. At one specified percentage of the total
unch displacements (PPD), a high binder force (HBF) replaces

Fig. 1. The pattern of the stepped variable binder force.
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Fig. 2. The deformation contour of the U-shaped part (a half model).

he LBF and it is intended to cause plastic strains in the sidewall
6]. This stepped variable binder force curve is determined by
hree parameters: LBF, HBF and PPD. The LBF should be suffi-
ient to remove wrinkling [22], while in U-shaped forming there
s no wrinkling problem [5] and hence it can be specified as a
mall and safe value beforehand. Thus the optimization of the
ariable binder force is actually equivalent to the optimization
f the HBF and PPD.

Fig. 2 is a half deformation contour of the part after forming.
is the bound point of the contour. H is the distance of M

n z direction between the deformation contour and the non-
pringback contour. It is obvious that H can be used to represent
he magnitude of the springback as the larger H indicates the
arger springback. So the present optimization problem can be
ormulated to optimize the variable binder force to obtain the
inimum H with uncertain friction coefficient as follows:

min f (X, μ)

XT = [HBL, PPD] ∈ Ω, μ = [μL, μR]
(1)

here X denotes the decision vector composed by HBL and
PD. Ω denotes the range of X. μ is the uncertain friction
oefficient.

[
μL, μR

]
represents an interval number and the

uperscripts L, R denote the lower, upper bounds of the interval,
espectively. Though the friction coefficient cannot be deter-
ined in the practical forming process, its value will not be

eyond this interval. f is the objective function which represents
and it is obtained through FEM. Obviously, f is a nonlinear

unction of X. For each specific X, the possible values of f form
n interval because the uncertain coefficient μ is an interval.
he problem defined by Eq. (1) has been beyond the capacity
f traditional optimization methods and linear interval number
rogramming methods (e.g., [23]). In the following sections, an
INP method [24] will be introduced to solve above complex
ncertain optimization problem.

. An NINP method

The order relations are often used to compare the interval

umbers in the interval number programming. They indicate
hat an interval number is better than another but not that one
s larger than another. Ishibuchi and Tanaka [17] defined the
rder relation ≤mw between interval numbers A and B for the
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shown in Fig. 3.

The inputs of the NN model are X, namely HBF and PPD. The
outputs are two bounds of the objective function. The training
samples for the NN model consist of a number of sets of inputs
64 C. Jiang et al. / Journal of Materials P

aximization problem:

A≤mwB, if m(A) ≤ m(B) and w(A) ≥ w(B)

A<mwB, if A≤mwB and A �= B

m(A) = AL + AR

2
, w(A) = AR − AL

2
, m(B) = BL + BR

2
, w(

here ≤mw represents the preferences of the decision maker
o the midpoint value m and the half-width w of the interval
umber. For the minimization problem, ≤mw has the following
orm:

A≤mwB, if m(A) ≥ m(B) and w(A) ≥ w(B)

A<mwB, if A≤mwB and A �= B

m(A) = AL + AR

2
, w(A) = AR − AL

2
, m(B) = BL + BR

2
, w(

omparing the intervals of the objective function Eq. (1) using
mw defined by Eq. (3), we expect that the optimal interval of the

bjective function has both of the smallest midpoint value and
alf-width. Therefore this uncertain objective function can be
onverted into a deterministic two-objective optimization prob-
em as follows:

min[m(f (X, μ)), w(f (X, μ))]

m(f (X, μ)) = 1

2
(fL(X) + fR(X))

w(f (X, μ)) = 1

2
(fR(X) − fL(X))

(4)

t each iterative step of X, f(X, μ) is an interval and its bounds
L(X), fR(X) can be obtained as follows:

fL(X) = min
μ ∈ Γ

f (X, μ), fR(X) = max
μ ∈ Γ

f (X, μ)

μ ∈ Γ = {μ|μL ≤ μ ≤ μR}
(5)

here the decision vector X is regarded as a constant and two
eterministic optimization processes are performed with μ as the
ptimization variable. Through Eq. (5), the uncertain coefficient
is removed and Eq. (4) becomes a deterministic two-objective

ptimization problem. The two objective functions in Eq. (4)
re analogous to minimize the average value and deviation of
he uncertain objective function in Eq. (1), respectively. Through

inimizing the half-width, the variance of the objective function
aused by the uncertain friction coefficient will be decreased.
he objective function can become insensitive to the fluctuation
f the uncertain coefficient. Thus it can guarantee the reliability
f the optimization result.

Using the linear combination method [25], the two objective
unctions in Eq. (4) are formulated in terms of a desirability
unction f̄ as follows:

in f̄ = (1 − β)(m(f (X, μ)) + ξ) + β(w(f (X, μ)) + ζ) (6)
here 0 ≤ β ≤ 1 is the weight factor of the two objective func-
ions. ξ and ζ are two parameters which make m(f(X, μ))+ξ and
(f (X, μ)) + ζ non-negative. A hybrid optimization algorithm
ill be suggested to seek for the optimum of Eq. (6) in the fol-

owing section.
sing Technology 182 (2007) 262–267

BR − BL

2

(2)

BR − BL

2

(3)

. Hybrid optimization algorithm

In this paper, the intergeneration projection genetic algorithm
IP-GA) [26] is employed as the optimization tool for Eq. (6).

n the optimization process, hundreds of individuals of the deci-
ion vector X will be produced. For each X, two deterministic
ptimization processes defined by Eq. (5) will be performed to
chieve the interval of the objective function. If IP-GA is also
sed as the optimization tool for Eq. (5), the nesting of IP-GA
ill be caused and whereby the optimization efficiency will be
ery low. To improve the efficiency, an NN model is used to
reate the connections between the decision vector X and the
nterval of the objective function. Once trained, the NN model
an take place the two deterministic optimization processes and
utput the bounds of the objective function for each X very
uickly. The flowchart of the hybrid optimization algorithm is
Fig. 3. The flowchart of the hybrid optimization algorithm.
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(punch, die) are dense. A half FEM model is built because of
the symmetry. The computation is accomplished by the FEM
codes developed by the laboratory where the authors are work-
ing.
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3

Fig. 4. The procedure to generate the training sample using IP-GA.

nd outputs. All of the samples are normalized between 0.1 and
.9 [27]. In the two-dimensional range Ω, a set of combinations
f X are selected. For each X, IP-GA is used twice to obtain the
ounds of the objective function based on Eq. (5). Then this X
nd the bounds of the objective function form one sample. The
omputational process of one sample’s generation is shown in
ig. 4. It is found that X is fixed and the friction coefficient is
sed as the optimization variable in this computational process.
hen computing the upper bound, the value of the objective

unction is used as the fitness of the IP-GA; when computing
he lower bound, the minus is added to the objective function
nd it is used as the fitness. In the hybrid optimization algo-
ithm, constructing the samples is most time-consuming. Once
he samples are obtained and the NN is trained, the NN can take
lace the two optimization processes defined by Eq. (5). Thus
he optimization nesting can be removed and the efficiency can
e improved greatly.

IP-GA combines the micro GA (�GA) [28] with the inter-
eneration projection (IP) operator and has a better global
onvergence performance [26]. An NN model is a type of com-
utational model. It has three parts: input layer, output layer and
idden layers. In this paper, the non-linear hyperbolic functions
re used as the activation functions to increase the modeling flex-
bility. A modified back-propagation learning algorithm with a

ynamically adjusted learning rate and an additional jump factor
s applied. Using this algorithm, the possible saturation of the
igmoid function can be removed and the training efficiency can
e improved [29].

able 1
he geometry parameters and material parameters of the part

heet length (mm) Sheet width (mm) Sheet thickness (mm) Young’s

50 35 1.0 206
Fig. 5. The U-shaped forming of NUMISHEET’93 (unit: mm) [5].

. The application

The presented method is applied to the computational model
f NUMISHEET’93 as shown in Fig. 5. The geometry and mate-
ial parameters of the model are listed in Table 1. The interval
f the friction coefficient μ is specified as [0.1, 0.2]. Two-
imensional degenerated shell element [30] and elasto-plastic
aterial model are used. The whole FEM simulation process

s divided into two parts: forming and springback. The part is
ivided into 84 elements. As shown in Fig. 6, the elements con-
acting the binder are sparse, while ones contacting the tools
Fig. 6. The FEM mesh of the part.

modulus (GPa) Poisson’s ratio Relation of stress and strain (MPa)

0.3 σ = 565.2(0.007117 + εp)0.2589
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Table 2
The comparison of the CBF and the optimal variable binder force

Binder force
(KN)

Maximum engineering
major strain (%)

Maximum reduction
of the thickness (%)

H (mm)

CBF 25.6 Lower bound 18.5 11.4 4.5
Upper bound 22.7 13.2 7.6

V 13.5 8.4 1.3
16.2 9.6 6.2
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ariable binder force 25.6 Lower bound
PPD 67.5% Upper bound

In this paper, an NN model with one hidden layer is used. The
euron numbers of the input layer, hidden layer and output layer
re 2, 8 and 2, respectively. The LBF is specified as a small value
.45 kN. A large value 40 kN is selected as the maximum of the
BF, thus the range of HBF is [2.4 kN, 40 kN]. The total punch
isplacement is 70 mm as shown in Fig. 5. Because the LBF
s intended to facilitate the flow of the material and this stage
hould be kept longer, the minimum of the PPD is specified as
5%. HBF is intended to cause plastic strains in the sidewall and
ake the material of the flange no longer flow into the die cavity.
hus sufficient forming time should be left to HBF for plastic
trains and whereby 85% is a proper value for the maximum of
he PPD [6]. So the range of the PPD is specified as [55%, 85%].
he HBF and PPD are selected as 12 and 8 levels of change in

he search range and hence a total of 96 training samples are
sed. For the IP-GA, the population size and the probability
f crossover are set to 5 and 0.5, respectively. The stopping
riterion is imposed to limit the IP-GA run to a maximum of
00 generations. The weight factor β is specified as 0.5. ξ and ζ

re specified as 0 and 0 because m(f(X, μ)) and w(f (X, μ)) in
q. (6) are always non-negative.

Through above mentioned uncertain optimization method,
he optimum is sought as HBF = 25.6 kN, PPD = 67.5% and
¯ = 3.1 mm. In the FEM codes, the HBF and PPD are specified
s 25.6 kN and 67.5%, and the friction coefficient is employed
s the optimization variable. Then the upper and lower bounds
f the objective function at this optimal HBF and PPD are
btained as 6.2 and 1.3 mm based on Eq. (5). In these two opti-
ization processes, the FEM computation is called repeatedly.
he corresponding friction coefficients are 0.10 and 0.16 when

he objective function reaches to the upper and lower bounds,
espectively. Inputting the optimal HBF and PPD as well as these
wo friction coefficients into the FEM codes, respectively, two
eformation contours of the part are obtained as shown in Fig. 7.
he contours and represent the cases with the largest and
mallest springback, respectively. All possible deformation con-
ours of the part caused by the uncertain friction coefficient at
his optimal HBF and PPD will be between these two contours.

In this section the optimal variable binder force from the
resented method will be compared with CBF. If the obtained
ptimal variable binder force can take better forming quality
han traditional CBF method, we can say that the optimization
esult is effective. Then the presented method which generates

his optimal variable binder force will also be proven effective.
ere the intervals of the maximum engineering major strain str
f the material and maximum reduction red of the thickness at
he optimal HBF and PPD are computed through the following

l
c
o
c

ig. 7. The bounds of the deformation contours at the optimal variable binder
orce.

quations:

strL(Xo) = min
μ ∈ Γ

str(Xo, μ), strR(Xo) = max
μ ∈ Γ

str(Xo, μ)

redL(Xo) = min
μ ∈ Γ

red(Xo, μ), redR(Xo) = max
μ ∈ Γ

red(Xo, μ)
(7)

here Xo denotes the optimal HBF and PPD, namely
BF = 25.6 kN and PPD = 67.5%. In addition, 25.6 kN is used

s the CBF to act on the sheet metal. Then through the optimiza-
ion processes with the friction coefficient as the optimization
ariable, the bounds of the objective function, maximum engi-
eering major strain and maximum reduction of the thickness
an be also achieved. All of the results under the variable binder
orce and CBF are listed in Table 2. It is found that the lower
ounds of the maximum engineering major strain and maximum
eduction of the thickness at CBF = 25.6 kN are 18.5 and 11.4%,
espectively. However, the upper bounds of these two parameters
nder the optimal variable binder force are only 16.2 and 9.6%,
nd they are both smaller than CBF’s. Furthermore the interval of
he objective function under the optimal variable binder force is
1.3 mm, 6.2 mm], while the one of CBF is [4.5 mm, 7.6 mm]. It
ndicates that using this optimal variable binder force has much
ess chances to be cracked. As a result, the presented method

an find the good variable binder force parameters to obtain both
f the smaller springback and strain with the uncertain friction
oefficient.
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. Conclusion

In this paper, an uncertain optimization method is given to
ptimize the stepped variable binder force in U-shaped form-
ng with uncertain friction coefficient. The friction coefficient is
reated as an interval and the FEM is used to simulate the forming
rocess. Based on the order relation of the interval number, the
ncertain problem is changed into a deterministic two-objective
ptimization problem. A hybrid optimization algorithm is sug-
ested to achieve the optimum. In the end, the presented method
s applied to the computational model of NUMISHEET’93. The
pringback and strain under the optimal variable binder force
nd CBF are also compared. The results indicate that using the
resented method a good variable binder force can be sought to
btain both of the small pringback and strain. In further study,
he presented uncertain optimization method can be applied to

ore complex sheet metal forming problems, and more uncer-
ain parameters can be considered.
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